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Optimal Control of Multi-Supplier Inventory
Management with Lead Time

Darsih Idayani and Subchan Subchan

Abstract—In the current global competition, companies are
required to save money in order to survive. One of the expenses
that can be reduced is the cost of inventory control. To minimize
these costs, we require a proper planning and management of the
inventory. Ordering supplies should be performed at a certain
time period, especially with uncertain demand. As such, the
company must determine when to order at the suppliers and how
many should be ordered. So there will be no excess inventory
in the warehouse because of too much ordering or because of
the inventory cannot meet demand due to late or too little order
to suppliers. Consequently, in this research, a quadratic cost
functional is used as the objective function in multi-supplier
inventory management problem with different lead time. Optimal
control theory, LQR (Linear Quadratic Regulator) is used to
solve this problem. According to the simulation, we conclude
that the smaller weight resulted in more optimal inventory cost.

Index Terms—Optimal control, linear quadratic regulator,
inventory control, multi supplier, lead time.

I. INTRODUCTION

INVENTORY management is one of the operation man-
agement functions that is very important because inventory

requires a lot of capital and affects to customer demand
fulfilment. Inventory management has an impact on all of
the business functions, especially operation, marketing, and
finance. Inventory is a stock of materials used to make ease
of production or to satisfy customer demand. Inventory specif-
ically consists of raw materials, semi-finished goods (work in
process), and finished goods.

Every company will strive to meet the consumers demand at
the right time and exact amount. Loss of sale due to a shortage
of inventory should be avoided by the company. Inventory
shortages can decrease the sales, customers trust, and cus-
tomers loyalty. However, overstock can raise the holding cost.
Furthermore, there is a wasteful that occurs during storage
such as unused inventory because of waiting to be produced.
To solve the problems, a company requires proper planning
and management of inventory.

One approach to solving inventory control problems is
optimal control theory [1], [2], [3]. Research conducted by
Ignaciuk and Bartoszewicz discussed the theory of discrete
sliding-mode control that is used to design new supply strate-
gies for periodic review inventory systems. In contrast to
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the classical, stochastic approaches, they focus on optimizing
the inventory system dynamics [4]. Xiao-Jun, Ai-Ming, and
Bao-Lin deal the approximation of optimal inventory control
problem of the supply chain networks with lead time. The
simulation examples show that the inventory replenishment
strategy is effective to reduce bullwhip and thereby improve
the performance of supply chain networks system [5]. Smagin,
Koshkin, and Kim propose an algorithm for inventory control
with incomplete information about the demand model [6].
Akikuni, Okuhara, and Fujisaki present the optimal control
of multiple suppliers inventory systems with lead time and the
order rate to each supplier is time varying [7]. Granin, Mandel
and Vilms describe a multi-step discrete-time inventory control
problem that occurs in the supply chain with several alterna-
tive suppliers [8]. Luthfi, Sutrisno, and Widowati formulate
a dynamical linear system with random parameter in the
matrix coefficient to solve the inventory control problem
with imperfect delivery proves and apply the robust linear
quadratic regulator (RLQR) to find the optimal decision [9].
Idayani, Sari, and Munawwir aim to minimize the cost of
inventory procurement by using the optimal control theory.
The necessary conditions of Pontryagin’s Maximum Principle
(PMP) and Karush-Kuhn-Tucker (KKT) are met in order to
obtain the optimal raw material procurement cost [10].

Various methods have been used to solve supplier selection
problems. Nguyen, Chen, and Wang propose a mixed integer
linear programming (MILP) model which allows for optimiz-
ing supplier selection and transportation plan [11]. Nguyen
and Chen present a two-stage stochastic programming model
dealing with supplier selection to stabilize feedstock supply
of a biomass supply chain in uncertain environments [12].
Hosseini et al propose a stochastic bi-objective mixed integer
programming model to support the decision-making in how
and when to use both proactive and reactive strategies in
supplier selection and order allocation [13]. Memari et al
present an intuitionistic fuzzy TOPSIS method to select the
right sustainable supplier that concerns nine criteria and thirty
sub-criteria for an automotive spare parts manufacturer [14].

This research used quadratic cost functional as an objec-
tive function in multi-suppliers inventory management with
different lead times that have been discussed in [15]. Optimal
control theory, Linear Quadratic Regulator (LQR) is used to
find the minimum cost. The quadratic cost functional has been
implemented to find the optimal solution in inventory manage-
ment of rice in Bulog, national logistical supply organization.
Then it is analyzed and simulated using Matlab.
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II. PRELIMINARIES

A. Inventory Management Model
1) The Goods Flow in Supply Chain: According to [15],

generally, the goods flow in a supply chain is illustrated in Fig.
1. The distribution center in connection with the consumer
or the retailers and suppliers are used to provide goods for
production or to meet consumers demand in the distribution
network.

Fig. 1: The goods flow in a supply chain.

In this model, the effect of the delay is considered. Delay
is the waiting time between ordering goods on suppliers and
goods arrivals at the distribution center. The waiting time in
fulfilling the order is referred to lead-time. Here is an overview
of the inventory system with multiple suppliers.

In Fig. 2, we can see that a number of ordered goods is
determined by the controller. The number of orders that is
ordered from the supplier is denoted by u(kT ), where T is
discrete time or period review and k = 1,2, . . .. The on-hand
stock is an amount of inventory or goods in the warehouse
that is ready to be distributed to customers if there is demand
at time kT denoted by y(kT ). The target stock denoted by yd
is the amount of inventory that is relieved to meet demand,
where yd > 0 is used to determine the number of orders u(kT ).

The customer demand denoted by d(kT ) is unknown before,
where d(kT ) ≥ 0. Therefore, the number of demand d(kT )
should be limited, i.e. with maximal demand dmax that is
acceptable to the center distribution. The demand d(kT ) must
be smaller or equal to the maximal demand dmax. In other
words the constraint of demand d(kT ) ie

0≤ d(kT )≤ dmax. (1)

Goods sold to customers so that out of the distribution center
denoted by h(kT ), where h(kT ) ≥ 0. If there is a customer
demand d(kT ), then h(kT ) is smaller or equal to the demand.
So it can be written as follows

0≤ h(kT )≤ d(kT )≤ dmax. (2)

The order for a stock is done at regular interval kT based on
the on-hand stock y(kT ), the number of target stocks yd , and
the previous order. In the case of multi suppliers, the number
of orders u(kT ) can be divided among m suppliers choices
according to company strategy. As a result, in any review
period k, γp is the order allocated to supplier p (p= 1,2, . . . ,m)
where γp is a real number in the interval [0,1] that satisfies

m
∑

p=1
γp = 1. In a certain case, when γp = 1, then a single supplier

p is selected to send all the orders, while γp = 0 means no
replenishment from option p.

The number of orders for each supplier p comes from the
multiplication between the order allocation γp and the total
order u at kT −Lp, i.e.

up(kT ) = γpu(kT −Lp). (3)

Any non-zero order placed on supplier p is realized after lead-
time delay Lp, which is assumed to be a multiple of the review
period, i.e. Lp = npT , where np is a constant positive integer
that represents one round of inventory distribution. Then, it
can be said that in one round of goods flow for each supplier,
Round Trip Time (RTT) RT Tp = Lp = npT . Supplier options
for an order based on lead time of each supplier is

L1 ≤ L2 ≤ ·· · ≤ Lm−1 ≤ Lm. (4)

The change of the on-hand stock is

y[(k+1)T ] = y(kT )+
m

∑
p=1

γpu(kT −Lp)−h(kT ). (5)

The on-hand stock for each k≥ 0 can be expressed as follows

y(kT ) =
m

∑
p=1

k−np−1

∑
i=0

γpu(iT )−
k−1

∑
i=0

h(iT ). (6)

2) State Space and Objective Function of Inventory Control
Model: Discrete-time system is described in the state space
according to [15] as follows

xxx[(k+1)T ] = AAAxxx(kT )+BBBu(kT )+VVV h(kT ) (7)
y(kT ) = CCCT xxx(kT ) (8)

where xxx(kT ) = [x1(kT ) x2(kT ) ... xn(kT )]T is the state vector
with x1(kT ) = y(kT ) represents on-hand stock in period k and
xi(kT ) = u[(k− n+ i− 1)T ] for any i = 2, ...,n equals to the
delayed input signal u. The order for this system is n = nm +
1 = (Lm/T )+1 depend on discrete period T and the longest
round time on the goods flow in a supply chain.

Matrix AAA is an n×n state-space matrix, BBB, VVV , and CCC is the
n×1 vector

AAA =


1 an−1 an−2 . . . a1
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

 ,BBB =


0
0
...
0
1

 ,

VVV =


−1
0
...
0
0

 , and CCC =


1
0
...
0
0

 . (9)

The first line element in the matrix AAA is

a j = ∑
p:Lp= jT

γp (10)

which indicates the allocation of several supplier choices with
lead time jT ( j = 1,2, . . . ,nm) in the number of total orders
allocated by the controller. If there is no allocation for the
supplier, then the appropriate allocation a j in the total order

is zero. From condition
m
∑

p=1
γp = 1, we obtain

nm
∑
j=1

a j = 1. Using

(10), then (6) becomes

y(kT ) =
nm

∑
j=1

k− j−1

∑
i=0

a ju(iT )−
k−1

∑
i=0

h(iT ). (11)
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Fig. 2: Inventory system model with multiple suppliers and lead time.

Then we can present a multi-supplier system as follows

x1[(k+1)T ] = x1(kT )+an−1x2(kT )
+an−2x3(kT )+ · · ·+a1xn(kT )−h(kT )
x2[(k+1)T ] = x3(kT )
...
xn−1[(k+1)T ] = xn(kT )
xn[(k+1)T ] = u(kT )

(12)

where the desired system state is xxxd = [xd1 xd2 · · · xdn]
T = [yd

0 · · · 0]T , and the target stock is xd1 = yd .
From the point of view of dynamic system optimization, the

purpose of the control is to bring the system state (the current
stock) to the desired value (target state) without any redundant
control. In other words, we want to reduce the closed-loop
system error e(kT ) close to zero by using the appropriate
number of orders.

e(kT ) = y(kT )− yd (13)

Therefore, we will look for an optimum controller uopt(kT ),
which minimizes the following objective function

J(u) =
1
2

∞

∑
k=0

u2(kT )+w[y(kT )− yd ]
2 (14)

where w is weight, the positive constant used to adjust the
influence of controller command and the output variable at
the value of the objective function.

B. Optimal Control

The main goal of optimal control is to determine control
signals which affect a process to meet physical constraints.
Then, at the same time can be determined the optimum value
in accordance with performance index or objective function
[16], [17]. Formulations in optimal control problem are as
follows [16]
• Describing the mathematical process means getting the

mathematical method of controlling process (generally in
the form of a state variable).

• Specification of the objective function.
• Determining the boundary conditions and physical con-

straints on the state and or control.
In the following, we described the linear, time-variant, and

discrete-time control systems.

xxx(k+1) = AAA(k)xxx(k)+BBB(k)uuu(k) (15)

where k = k0,k1, . . . ,k f −1, xxx(k) is a state vector of size n, uuu(k)
is the control vector of size n, AAA(k) and BBB(k) respectively are
n×n and n× r matrices.

Generally, the problem of discrete-time optimal control can
be formulated as follows. For the purpose of computing control
uuu(t) that optimize objective function.

J =
1
2

xT (k f )FFF(k f )x(k f

+
1
2

k f−1

∑
k=k0

[xT (k)QQQ(k)x(k)+uT (k)RRR(k)u(k)] (16)

where FFF(k f ) and QQQ(k) are n× n symmetric matrices which
is positive semi-definite. While RRR(k) is a symmetric matrix of
r× r which is positive definite. The boundary conditions are
initial condition xxx(k = k0) = xxx(k0) and final condition xxx(k f ).

C. Linear Quadratic Regulator

Linear Quadratic Regulator (LQR) is used to produce the
closed-loop optimal control of a linear system with a quadratic
objective function J [16]. It leads to the matrix of Riccati
differential equations. According to the goal, there is LQR
whose the system leads to a tracking system or called by
Linear Quadratic Tracking (LQT) system because of searching
for the output or optimal state approaching the desired state.
In other words, we will search for the smallest error or close
to zero. The following is LQT formulation and its solution
[16].

The linear state equation is described as

xxx(k+1) = AAAxxx(k)+BBBuuu(k) (17)

and output relationships

yyy(k) =CCCxxx(k). (18)

The objective function will be minimized is

J =
1
2
[CCCxxx(k f )− zzz(k f )]

T FFF [CCCxxx(k f )− zzz(k f )]

+
1
2

k f−1

∑
k=k0

{
[CCCxxx(k)− zzz(k)]T QQQ[CCCxxx(k)− zzz(k)]

+uuuT (k)RRRuuu(k)
}

(19)

where xxx(k) is the n-sized state vector, uuu(k) is the r-sized
control vector and yyy(k) is n-sized output vector. While FFF and
QQQ are n×n symmetric positive semi-definite matrix and RRR is
r×r symmetric positive semi-definite matrix. Initial condition
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is given by xxx(k0) and the final condition xxx(k f ) is free with
predetermined k f .

The goal is to make the error as small as possible with
minimal control, where zzz(k) is the n-sized target vector.

eee(k) = yyy(k)− zzz(k) (20)

D. Difference Riccati Equation

Difference Riccati Equation (DRE) is the first order and non
linear ordinary differential equation that is formed as follows

y′ = a(x)y2 +b(x)y+ c(x) (21)

with a(x) 6= 0 and c(x) 6= 0. Equation name is taken from Count
Jacopo Francesco Riccati (1676-1754) [18], [19].

III. INVENTORY MANAGEMENT MODEL

A. Determination of Optimal Tracking System

The following steps can be done to obtain a solution for
optimal tracking system [16], [20].

Step 1: Formulation of the Hamiltonian
Formulate the Hamiltonian as follows

H (xxx(k),uuu(k),λλλ (k+1))

=
1
2
{[CCCxxx(k)− zzz(k)]T QQQ[CCCxxx(k)− zzz(k)]

+uuuT (k)RRRuuu(k)}+λλλ
T (k+1)[AAAxxx(k)+BBBuuu(k)] (22)

where λλλ (k+1) is a Lagrange multiplier that refers to co-state.
Step 2: Determination of the state and co-state system
The state equation is

xxx∗(k+1) =
∂H

∂λλλ
∗(k+1)

= AAAxxx∗(k)+BBBuuu∗(k) (23)

The co-state equation is

λλλ
∗(k) =

∂H
∂xxx∗(k)

= AAAT
λλλ
∗(k+1)+CCCT QQQCCCxxx∗(k)

−CCCT QQQzzz(k) (24)

The control equation of the stationary condition is

∂H
∂uuu∗(k)

= 0

BBBT
λλλ
∗(k+1)+RRRuuu∗(k) = 0 (25)

Step 3: Determination the open-loop optimal control
From (25), the open-loop optimal control is

uuu∗(k) =−RRR−1BBBT
λλλ
∗(k+1) (26)

By using optimal control (26) at state (23), the Hamiltonian
System of state (23) and co-state (24) is[

xxx∗(k+1)
λλλ
∗(k)

]
=

[
AAA −BBBRRR−1BBBT

CCCT QQQCCC AAAT

][
xxx∗(k)

λλλ
∗(k+1)

]

+

[
0

−CCCT Q

]
zzz(k) (27)

Step 4: Determination of Riccati equation
To find the closed-loop form for optimal control (26), it is

assumed a transformation

λλλ
∗(k) = PPP(k)xxx∗(k)−ggg(k) (28)

where the matrix PPP(k) and vector ggg(k) have not been deter-
mined.

Eliminate co-state λλλ (k) from the Hamiltonian system (27)
using transformation (28). Then we obtain

PPP(k) = AAAT [PPP−1(k+1)+BBBRRR−1BBBT ]−1AAA+CCCT QQQCCC (29)

and vector of linear differential equations ie

ggg(k) = AAAT {III− [PPP−1(k+1)

+BBBRRR−1BBBT ]−1BBBRRR−1BBBT}ggg(k+1)

+CCCT QQQzzz(k) (30)

Step 5: Determination of the closed-loop optimal control

uuu∗(k)

= −[RRR+BBBT PPP(k+1)BBB]−1BBBT PPP(k+1)AAAxxx∗(k)

+[RRR+BBBT PPP(k+1)BBB]−1BBBT ggg(k+1) (31)

uuu∗(k) =−LLL(k)xxx∗(k)+LLLg(k)ggg(k+1) (32)

The optimal state trajectory is obtained from substituting
equation (32) to equation (23), as follows

xxx∗(k+1) = [AAA−BBBLLL(k)]xxx(k)+BBBLLLg(k)ggg(k+1) (33)

B. Determination of the Solution of Difference Riccati Equa-
tions Matrix

DRE matrix is DRE in matrix form. The solution of DRE
matrix at (29) will be explained in the following example, with
QQQ = IIIn×n and R = 1 [15], [21].

PPP(k) = AAAT PPP(k+1)
[
I +BBBBBBT PPP(k+1)

]−1
AAA

+wCCCCCCT (34)

with

AAA =


1 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

 ,BBB =


0
0
...
0
1

 ,

VVV =


−1
0
...
0
0

 , and CCC =


1
0
...
0
0

 (35)

DRE can be solved by a classical approach i.e. with back-
ward iteration as in [16], [20], [22], [23] that can be used to
complete DRE with predefined final dimension and state. But
it does not apply to solve equation (34) because of it has n×n
dimension and has no final state.
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A suitable solution for (34) is to use iteration, analytic
substitution of the general form of PPP to the right side of the
equation and compare it to the left side so that at each step
the amount of independent variables pi j will be reduced [15],
[21]. Where pi j defines the Riccati matrix element on the i-th
row and the j-th column.

The general PPP = PPP0 = [pi j]n×n is

PPP0 =


p11 p12 · · · p1n
p12 p22 · · · p2n
...

...
. . .

...
p1n p2n · · · pnn

 . (36)

To start the iteration, substitute PPP0 to the right side of the
Riccati equation (34) along with the matrices AAA, BBB, CCC, and w.
Then, look for the equation among the elements pi j so that
can be obtained a certain form or pattern in the matrix PPP. In
the first iteration, obtained an equation between elements in
the first two rows and the first two columns of the matrix PPP,
i.e. p12 = p11−w, p22 = p11−w, p23 = p13, and so on until
the n-th element p2n = p1n (Since PPP is a symmetric matrix
then pi j = p ji). From the first iteration, we obtain

PPP1 =


p11 p11−w p13 · · · p1n

p11−w p11−w p13 · · · p1n
p13 p13 p33 · · · p3n
...

...
...

. . .
...

p1n p1n p3n · · · pnn

 . (37)

Then we repeat the substitution process and search for the
pattern until all of the elements of PPP can be written in the form
of the first element p11 and n-size system. The final form of
PPP can be written as (38).

Then we compute p11 by substituting (38) to the right side
of the equation (34) and comparing the first row of the first
column element on the right side with the element on the left
side so as to produce

p11 = p11 +w− (p11−(n−1)w)2

p11−(n−1)w+1
atau

p11 = nw+1− 1
p11−(n−1)w+1

(39)

The roots of p11 can be obtained from (39), that is

p±11 =
(2n−1)w±

√
w(w+4)

2
(40)

where p+11 ensures all elements on PPP are positive.

IV. RESULTS AND DISCUSSIONS

A. The Solution of Inventory Control Model

1) Optimal Control Solution Using LQR (Linear Quadratic
Regulator): Before solving the inventory control model, sub-
stitute the output equation yyy(kT ) (7) into the objective function
(14) to obtain

J(u) =
1
2

∞

∑
k=0
{u2(kT )+w[CCCT xxx(kT )− yd ]

2} (41)

To complete the inventory control model using LQR with
LQT system, the first thing to do is determining the Hamilto-
nian function. From (22), we obtain the following Hamiltonian
function

H =
1
2

u2(kT )+
1
2

w(CCCT xxx(kT )− yd)
2

= +λλλ
T [(k+1)T ][AAAxxx(kT )+BBBu(kT )] (42)

After obtaining the Hamiltonian function H , from equation
(23) the obtained optimum state is

xxx∗[(k+1)T ] = AAAxxx∗(kT )+BBBu∗(kT ) (43)

and from equation (24) the optimal co-state is obtained

λλλ
∗(kT ) = AAAT

λλλ
∗[(k+1)T ]+wCCCTCCCxxx(kT )−wCCCT yd . (44)

While the open-loop optimal control is obtained from station-
ary conditions (25)

u∗(kT ) =−BBBT
λλλ
∗[(k+1)T ] (45)

By substituting the optimal control at (45) to the optimal state
equation (43), we obtained

xxx∗[(k+1)T ] = AAAxxx∗(kT )−BBBBBBT
λλλ
∗[(k+1)T ] (46)

The Hamiltonian system of (27) is formed by combining state
(46) and co-state (44) as follows[

xxx∗[(k+1)T ]
λλλ
∗(kT )

]
=

[
AAA −BBBBBBT

wCCCTCCC AAAT

][
xxx∗(kT )

λλλ
∗[(k+1)T ]

]
+

[
0

−wCCCT

]
yd (47)

Next, we will look for closed-loop optimal control on (45).
From (28), we obtain

λλλ
∗(kT ) = PPP(kT )xxx∗(kT )−ggg(kT ) (48)

where the matrix PPP(kT ) and ggg(kT ) will be searched in the next
step. By substituting λλλ

∗(kT ) (48), state equation (46) becomes

xxx∗[(k+1)T ] =
[
I +BBBBBBT PPP[(k+1)T ]

]−1
AAAxxx∗(kT )

+BBBBBBT ggg[(k+1)T ] (49)

DRE PPP(kT ) is obtained by substituting λλλ
∗(kT ) (48) and

xxx∗[(k+1)T ] (49) to the co-state equation (44),

PPP(kT )xxx∗(kT )−ggg(kT )

= wCCCTCCCxxx∗(kT )

+AAAT [PPP−1[(k+1)T ]+BBBBBBT ]−1
AAAxxx∗(kT )

−wCCCT yd

+AAAT [PPP−1[(k+1)T ]+BBBBBBT ]−1
BBBBBBT ggg[(k+1)T ]

−AAAT ggg[(k+1)T ]

After being moved to the left, it becomes{
−PPP(kT )+AAAT [PPP−1[(k+1)T ]+BBBBBBT ]−1

AAA

+wCCCTCCC
}

xxx∗(kT )+ggg(kT )+
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PPP =


p11 p11−w p11−2w · · · p11− (n−1)w

p11−w p11−w p11−2w · · · p11− (n−1)w
p11−2w p11−2w p11−2w · · · p11− (n−1)w

...
...

...
. . .

...
p11− (n−1)w p11− (n−1)w p11− (n−1)w · · · p11− (n−1)w

 (38)

AAAT [PPP−1[(k+1)T ]+BBBBBBT ]−1
BBBBBBT ggg[(k+1)T ]−

AAAT ggg[(k+1)T ]−wCCCT yd = 0 (50)

From (50) we obtained Riccati equation

PPP(kT ) = AAAT [PPP−1[(k+1)T ]+BBBBBBT ]−1
AAA+wCCCTCCC (51)

which is the symmetric matrix PPPn×n and

ggg(kT ) +

AAAT [PPP−1[(k+1)T ]+BBBBBBT ]−1
BBBBBBT ggg[(k+1)T ] −

AAAT ggg[(k+1)T ]−wCCCT yd = 0

so that we obtained

ggg(kT ) = AAAT {I−
[
PPP−1[(k+1)T ]

+BBBBBBT ]−1
BBBBBBT

}
ggg[(k+1)T ]+wCCCT yd

After obtaining PPP(kT ) and ggg(kT ), the next step is to obtain
closed-loop optimal control. Substituting the equation λλλ

∗(kT )
(48) and xxx∗[(k+1)T ] (43) into equation u∗(kT ) (45) to obtain

u∗(kT ) = −BBBT PPP[(k+1)T ]AAAxxx∗(kT )

−BBBT PPP[(k+1)T ]BBBu∗(kT )+BBBT ggg[(k+1)T ]

After the equation containing u∗(kT ) is moved to the left,
we obtain

u∗(kT ) =−LLL(kT )xxx∗(kT )+LLLg(kT )ggg[(k+1)T ] (52)

where

LLL(kT ) = [I +BBBT PPP[(k+1)T ]BBB]−1BBBT PPP[(k+1)T ]AAA

is the feedback gain and

LLLg(kT ) = +[I +BBBT PPP[(k+1)T ]BBB]−1BBBT

is the feedback forward gain.
2) The Solution of DRE Matrix: As a prefix, we define the

general form of PPP = PPP0 = [pi j]n×n as

PPP0 =


p11 p12 · · · p1n
p12 p22 · · · p2n
...

...
. . .

...
p1n p2n · · · pnn

 . (53)

In the first iteration, substitute PPP0 to the right side of Riccati
equation (51) along with the matrices AAA, BBB, QQQ, and weight w.
Then, we search the equation among elements pi j so that we
can obtained certain form or pattern in matrix PPP. In this way,
we get the equation between elements in the first two rows and
the first two columns of the matrix PPP, i.e. p12 = an−1(p11−w),
p22 = a2

n−1(p11−w), p23 = an−1 p13 , and so on until the n-
th element p2n = an−1 p1n. (Because PPP is a symmetric matrix
then pi j = p ji). From this first iteration, we obtain P1 (54).

The next step is to substitute PPP1 (54) on the right side of
equation (51) and compare the result with the left side so as to
obtain a particular pattern. Then repeat the substitution process
and pattern searching until all the elements of PPP can be written
in the form of the first element p11 and the system size is n.
The final form of PPP can be written as (55) (for efficiency, top
element only).

In equation (55), the element pnn can be written as
n−1
∑
j=1

an− j (p11− (n− j)w) because
n−1
∑
j=1

an− j = 1. Substituting

(55) to the right side of equation (51) and compare the first-
row element of the first column on the right side with the
element on left side, so we obtain

p11 = 1+w

(
n−1

∑
j=1

ja j +1

)
−

(
p11−w

n−1

∑
j=1

ja j +1

)−1

(56)

From (56), we can obtain the roots of p11, i.e.

p±11 =

[
w

(
2

n−1

∑
j=1

ja j +1

)
±
√

w(w+4)

]
/2 (57)

where p+11 ensures all elements of PPP are positive and the
determinant is not negative. Then (55) and (57) will be used
to find the optimal control and state.

3) Optimal Solution of Inventory Control Model: To obtain
the optimal control and state, first will be searched feedback
gain equation LLL(kT ) by substituting PPP in equation (55) to the
equation LLL(kT ) at (52). We obtain

LLL(kT ) =
[

1 an−1
2
∑
j=1

an− j · · ·
n−2
∑
j=1

an− j 1
]

α. (58)

Then, we will find the feedback forward gain equation
LLLg(kT ) by substituting PPP in equation (55) to the equation
LLLg(kT ) at (52). So that we obtain

LLLg(kT )

=

 1 1 1 · · · 1−
np11−nw

n−1
∑
j=1

ja j +1

p11−w
n−1
∑
j=1

ja j




p11−w
n−1
∑
j=1

ja j

np11−nw
n−1
∑
j=1

ja j +1

 . (59)

Subsequently, we compute ggg by substituting PPP in equation
(55) to (52) and iterates until a particular form or pattern is
obtained in matrix ggg. The general form of ggg = ggg0 = [gi j]n×1
is defined by equation (60). In the first iteration, substitute ggg0
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PPP1 =


p11 an−1(p11−w) p13 · · · p1n

an−1(p11−w) a2
n−1(p11−w) an−1 p13 · · · an−1 p1n

p13 an−1 p13 p33 · · · p3n
...

...
...

. . .
...

p1n an−1 p1n p3n · · · pnn

 . (54)



p11 an−1(p11−w)
2
∑

j=1
an− j (p11− (3− j)w) · · ·

n−1
∑

j=1
an− j (p11− (n− j)w)

an−1(p11−w) a2
n−1(p11−w) an−1

2
∑

j=1
an− j (p11− (3− j)w) · · · an−1

n−1
∑

j=1
an− j (p11− (n− j)w)

p13 p23
2
∑

j=1
an− j

2
∑

j=1
an− j (p11− (3− j)w) · · ·

2
∑

j=1
an− j

n−1
∑

j=1
an− j (p11− (n− j)w)

...
...

...
. . .

...

p1n p2n p3n · · ·
n−1
∑

j=1
an− j

n−1
∑

j=1
an− j (p11− (n− j)w)


. (55)

to the right side of equation (52) along with matrices AAA, BBB, CCC,
and PPP. Then, equation among elements gi j is determined so
that we can obtain certain form or pattern on matrix ggg. From
this first iteration, we obtain ggg1 (60).

The next step is to substitute ggg1 (60) on the right side of
the equation (52) and compare the result with the left side
to obtain the certain form. Then repeat the substitution and
search process for the form until all the ggg elements can be
written in the form of the first element g11 and the system
size is n. The final form of ggg can be written as ggg (60).

ggg0 =


g11
g21

...
gn1

 , ggg1 =


g11

an−1(g11−wyd)

g31
...

gn1

 ,

ggg =



g11
an−1(g11−wyd)

2
∑
j=1

an− j(g11− (3− j)wyd)

...
n−2
∑
j=1

an− j(g11− (n−1− j)wyd)

n−1
∑
j=1

an− j(g11− (n− j)wyd)


. (60)

In equation (60), the element gn1 can be written as g11 −
n−1
∑
j=1

ja jwyd because
n−1
∑
j=1

an− j = 1. Next, we compute g11 by

substituting (60) to the right side of equation (52) and compare
the first-row element of the first column on the right side with
elements on the left side, we obtain

g11 = wyd

n−1

∑
j=1

ja j +1+

(
p11−w

n−1

∑
j=1

ja j

)−1
 (61)

Next, we will find the optimal control u∗(kT ) of equa-
tions (58), (59), and (60). To obtain u∗(kT ), we must find

Lg(kT )g[(k+1)T ] from equation (59) and (60). Then substi-
tute g11 and p11 into it so that we obtain

LLLg(kT )g[(k+1)T ] = βyd , (62)

with

β =
w

nw+α

[(
n−1

∑
j=1

ja j +1

)(
w

n−1

∑
j=1

ja j +α +w

)

+w
n−1

∑
j=1

1
2

j( j+1)a j

]
+α +w.

Substitute equation (58) and (62) to equation (52) to obtain
optimal control u∗(kT ) as follows

u∗(kT ) =−αx1(kT )−α

n

∑
j=2

(
j−1

∑
i=1

an−i

)
x j(kT )+βyd . (63)

In the previous section, it has been explained that x1(kT ) =
y(kT ) and x j(kT ) can rewritten in the form of control gener-
ated in the n− 1 period, ie x j(kT ) = u[(k− n+ j− 1)T ] for
every j = 2,3, . . . ,n which can be seen in the equation (16).
Then equation (63) becomes

u∗(kT ) = βyd−αy(kT )−α

k−(n−1)

∑
j=k−1

(
n−1

∑
i=k− j

ai

)
u( jT ). (64)

with
k−(n−1)

∑
j=k−1

(
n−1

∑
i=k− j

ai

)
u( jT ) =

n−1

∑
j=1

k−1

∑
i=k− j

a ju(iT )

Then the optimal control equation (64) can be rewritten to

u∗(kT ) = βyd−αy(kT )−α

n−1

∑
j=1

k−1

∑
i=k− j

a ju(iT ). (65)

In the optimal control (65), the number of orders for each
period are comparable to the difference between the amount
of on-hand stock and the desired amount reduced by an open
order. An open order is the number of orders already ordered
to the supplier but not yet reached the warehouse due to the
waiting time.
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4) Phase in the Inventory Control Model: In one period,
the inventory control model can be divided into two phases,
i.e. phase I (initial phase) in Table I and phase II in Table II.

TABLE I: Optimal Trajectory in Phase I (Initial Phase).

Variable k = 0,1, . . . ,n1
0 1,2, . . . ,n1−1 n1

h(kT ) 0, jika y(0)< d(kT ) d(kT )
d(kT ), jika y(0)≥ d(kT )

y(kT ) y(0)

u∗(kT ) βyd − y(0) βyd −αy(0)−α
n−1
∑
j=1

k−1
∑

i=k− j
a ju(iT )

TABLE II: Optimal Trajectory in Phase II.

Variable k = n1 +1, . . .
h(kT ) d(kT )

y(kT )
nm
∑
j=1

k− j−1
∑

i=0
a ju(iT )−

k−1
∑

i=0
h(iT )

u∗(kT ) βyd −αy(kT )−α
n−1
∑
j=1

k−1
∑

i=k− j
a ju(iT )

B. Properties of Inventory Control Model Solution

1) The stock is always positive: If equation (65) is used in
the system (7) and the desired stock (yd) meets

yd >
α

β
dmax

(
m

∑
p=1

γpnp +
1
α

)
, (66)

then the on-hand stock is always positive for k ≥ nm + 1. In
other words, there will be no backorder. Backorder occurs
if the on-hand stock cannot meet demand, so it needs some
time to fulfill the demand. Fortunately, this condition does not
occur because demand can be fulfilled by existing inventory
or placing an order.

2) Optimal control is not negative and bounded: If equation
(65) is used in system (7), then optimal control (number of
order) is always non-negative and bounded, i.e.

0≤ u(kT )≤max(βyd ,dmax), untuk k ≥ 0. (67)

V. IMPLEMENTATION ON RICE INVENTORY MANAGEMENT

A simulation model of multi-supplier inventory manage-
ment with lead time in the inventory of rice in Bulog, national
logistical supply organization, was used Matlab based on the
lead time of each supplier (Table III) and demand in the
distribution center (Fig. 3) for 6 months [24].

The first thing to do in this simulation is the determination
of order allocation for each supplier (γp) based on lead time
(Lp), with p = 1,2, . . . ,m are the suppliers. From Table III,,
note that there are m= 34 suppliers will fulfill the order. Order
allocation γp (Table III) is determined by pairwise comparison
[25].

The next step is to determine a j, the first-row elements of
n×n matrix AAA with j = 1,2, . . . ,n−1. To obtain the size of the
matrix AAA, rank suppliers based on lead time from the smallest
to largest thus satisfies the equation (4). It is assumed that
period of discretization is T = 1 day. Then we obtain a round
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Fig. 3: Demand in the distribution center.

TABLE III: Lead time, order allocation, and RTT of each
supplier.

p Lp γp RT Tp p Lp γp RT Tp
(days) (days)

1 2 0.026 1T 18 1 0.044 2T
2 2 0.026 1T 19 3 0.006 2T
3 1 0.044 1T 20 2 0.026 2T
4 1 0.044 1T 21 2 0.026 2T
5 1 0.044 1T 22 2 0.026 2T
6 1 0.044 1T 23 2 0.026 2T
7 3 0.006 1T 24 2 0.026 2T
8 2 0.026 1T 25 1 0.044 2T
9 3 0.006 1T 26 2 0.026 2T
10 1 0.044 1T 27 2 0.026 2T
11 2 0.026 1T 28 3 0.006 2T
12 2 0.026 1T 29 3 0.006 3T
13 2 0.026 1T 30 1 0.044 3T
14 2 0.026 2T 31 1 0.044 3T
15 2 0.026 2T 32 3 0.006 3T
16 1 0.044 2T 33 1 0.044 3T
17 1 0.044 2T 34 1 0.044 3T

trip time RT Tp = Lp = npT , with np = Lp/T (Table III). AAA is
an n×n matrix with n = nm +1 = 3+1 = 4.

The first-row elements of the matrix AAA is the sum of the
order allocation γp with the same lead time, i.e.

a1 = ∑
p:RT Tp=T

γp =
13

∑
p=1

γp = 0,574,

a2 = ∑
p:RT Tp=2T

γp =
29

∑
p=14

γp = 0,393,

a3 = ∑
p:RT Tp=3

γp =
34

∑
p=30

γp = 0,033,

who meets
3
∑

i=1
ai = 1. From equation (9), then we obtain

AAA =


1 a3 a2 a1
0 0 1 0
0 0 0 1
0 0 0 0


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=


1 0,033 0,393 0,574
0 0 1 0
0 0 0 1
0 0 0 0

 .
Determining the most effective weights w in providing optimal
value to the objective function (14). In this case, it will be
simulated with weights w = 0,1, w = 1, and w = 10.

The desired stock yd can be obtained from equation (66) in
first property by dmax = 582.448 kg/month or dmax = 19.415
kg/day. The parameters which will be used in the simulation
are shown in Table IV. Then, γ , a j, and yd are used to search
the on-hand stock y(kT ), optimal control u∗(kT ), and objective
function J.

TABLE IV: The Controller parameters

No. w α β yd (kg)
1. 0,1 0,2702 0,5886 45.995 > 45.990
2. 1 0,6180 3,6790 10.043 > 10.038
3. 10 0,9161 31,0132 1.468 > 1.463

The on-hand stock y(kT ) is influenced by previous order
that had come and amount of stock are used to meet the
demand (h(kT )) as in equation (11). In this simulation, we
performed three case studies with different weighting w as
shown in Table IV.

On-hand stock obtained from the third case study is shown
in Fig. 4 and Fig. 5. It can be seen that the number of stocks
never worth less than zero. It means the demand is always
mostly fulfilled. Therefore, no backorder cost to be incurred
and customer dissatisfaction which usually arise because of
the inability of the company to meet customer demand. So we
can say maximum service has been done.

Optimal control (order) is influenced by the desired stock yd ,
on-hand stock y(kT ), and prior order that has not yet arrived
(open order) as in equation (65). Optimal control obtained
from the three case studies with different w can be seen in Fig.
6 and Fig. 7. It can be seen that the optimal control is always
bounded as to the second property. The order never worth less
than zero and not exceed max{βyd ,dmax}. It means that the
order has a maximum for the minimum order still be able to
meet customer demand.

Fulfilling demand can be obtained from on-hand stock or
orders. In Fig. 1, demand trends occur from 100th to 120th
days without oscillation and overshoot. In Fig. 5, high demand
has an impact on stock levels not increasing and decreasing to
0. In Fig. 7, high demand has an impact on high order levels.
This condition occurs because the on-hand inventory is always
positive as in the second property (61). When the demand
is high but the on-hand stock is low, demand fulfillment is
obtained from high orders. So even though demand is high,
inventory is always positive. This means that there is no
backorder so that the customer is not dissatisfied by waiting
for inventory and Bulog does not need to pay a backorder cost.

The amount of inventory y(kT ) and optimal control u(kT )
depend on weighting w. In Fig. 4 and 5 can be seen that
along increasing the weight w, optimal control reacts faster
toward demand changes d(kT ). Meanwhile, when the weight
w decreases, the speed of reaction toward demand changes

also declined. In addition, the greater the weight w, the smaller
the on-hand stock. Conversely, the smaller the weight w, the
greater the on-hand stock.

The change of weight w affects on objective function. When
the weight w = 0,1, the objective function value is 0.9886×
109. However, when the weight w = 1, the objective function
rose 626% to 7.1737×109 and when the weight w = 10, the
objective function rose 970% to 76.774×109. The greater the
weight w, the greater the objective function. Conversely, the
smaller the weight w, the smaller the objective function. It can
be concluded that the smaller weight w, the objective function
is more optimal.
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Fig. 4: On-hand stock on initial phase.
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Fig. 5: On-hand stock.

VI. CONCLUSIONS

The selection of order allocation for each supplier with lead
time criteria can be used as a pairwise comparison with the
sum of all allocations is 1. The problems in multi-suppliers
inventory management with lead time can be solved with
optimal control Linear Quadratic Regulator with demand as
the controller that is based on on-hand stock, desired stock,
and customer demand. When the weight w= 0.1, the objective
function value is 0.9886× 109. However, when the weight
w = 1, the objective function rose 626%, to 7.1737× 109

and when weight w = 10, the objective function rose 970%
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Fig. 6: Optimal control/order on initial phase.
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Fig. 7: Optimal control/order.

to 76.774× 109. The greater the weight w, the greater the
objective function. Conversely, the smaller the weight w, the
smaller the objective function. It can be concluded that the
smaller weight w, the objective function is more optimal.
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